Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Ann Intern Med ; 175(9): 1310-1321, 2022 09.
Article in English | MEDLINE | ID: covidwho-1994458

ABSTRACT

DESCRIPTION: Coronavirus disease 2019 convalescent plasma (CCP) has emerged as a potential treatment of COVID-19. However, meta-analysis data and recommendations are limited. The Association for the Advancement of Blood and Biotherapies (AABB) developed clinical practice guidelines for the appropriate use of CCP. METHODS: These guidelines are based on 2 living systematic reviews of randomized controlled trials (RCTs) evaluating CCP from 1 January 2019 to 26 January 2022. There were 33 RCTs assessing 21 916 participants. The results were summarized using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) method. An expert panel reviewed the data using the GRADE framework to formulate recommendations. RECOMMENDATION 1 (OUTPATIENT): The AABB suggests CCP transfusion in addition to the usual standard of care for outpatients with COVID-19 who are at high risk for disease progression (weak recommendation, moderate-certainty evidence). RECOMMENDATION 2 (INPATIENT): The AABB recommends against CCP transfusion for unselected hospitalized persons with moderate or severe disease (strong recommendation, high-certainty evidence). This recommendation does not apply to immunosuppressed patients or those who lack antibodies against SARS-CoV-2. RECOMMENDATION 3 (INPATIENT): The AABB suggests CCP transfusion in addition to the usual standard of care for hospitalized patients with COVID-19 who do not have SARS-CoV-2 antibodies detected at admission (weak recommendation, low-certainty evidence). RECOMMENDATION 4 (INPATIENT): The AABB suggests CCP transfusion in addition to the usual standard of care for hospitalized patients with COVID-19 and preexisting immunosuppression (weak recommendation, low-certainty evidence). RECOMMENDATION 5 (PROPHYLAXIS): The AABB suggests against prophylactic CCP transfusion for uninfected persons with close contact exposure to a person with COVID-19 (weak recommendation, low-certainty evidence). GOOD CLINICAL PRACTICE STATEMENT: CCP is most effective when transfused with high neutralizing titers to infected patients early after symptom onset.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/therapy , Hospitalization , Humans , Immunization, Passive/methods , COVID-19 Serotherapy
3.
Blood Adv ; 6(12): 3678-3683, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1799125

ABSTRACT

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants severely limits available effective monoclonal antibody therapies. Effective drugs are also supply limited. COVID-19 convalescent plasma (CCP) qualified for high antibody levels effectively reduces immunocompetent outpatient hospitalization. The Food and Drug Administration currently allows outpatient CCP for the immunosuppressed. Viral-specific antibody levels in CCP can range 10- to 100-fold between donors, unlike the uniform viral-specific monoclonal antibody dosing. Limited data are available on the efficacy of polyclonal CCP to neutralize variants. We examined 108 pre-δ/pre-ο donor units obtained before March 2021, 20 post-δ COVID-19/postvaccination units, and 1 pre-δ/pre-ο hyperimmunoglobulin preparation for variant-specific virus (vaccine-related isolate [WA-1], δ, and ο) neutralization correlated to Euroimmun S1 immunoglobulin G antibody levels. We observed a two- to fourfold and 20- to 40-fold drop in virus neutralization from SARS-CoV-2 WA-1 to δ or ο, respectively. CCP antibody levels in the upper 10% of the 108 donations as well as 100% of the post-δ COVID-19/postvaccination units and the hyperimmunoglobulin effectively neutralized all 3 variants. High-titer CCP neutralizes SARS-CoV-2 variants despite no previous donor exposure to the variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , United States , COVID-19 Serotherapy
4.
N Engl J Med ; 386(18): 1700-1711, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1768967

ABSTRACT

BACKGROUND: Polyclonal convalescent plasma may be obtained from donors who have recovered from coronavirus disease 2019 (Covid-19). The efficacy of this plasma in preventing serious complications in outpatients with recent-onset Covid-19 is uncertain. METHODS: In this multicenter, double-blind, randomized, controlled trial, we evaluated the efficacy and safety of Covid-19 convalescent plasma, as compared with control plasma, in symptomatic adults (≥18 years of age) who had tested positive for severe acute respiratory syndrome coronavirus 2, regardless of their risk factors for disease progression or vaccination status. Participants were enrolled within 8 days after symptom onset and received a transfusion within 1 day after randomization. The primary outcome was Covid-19-related hospitalization within 28 days after transfusion. RESULTS: Participants were enrolled from June 3, 2020, through October 1, 2021. A total of 1225 participants underwent randomization, and 1181 received a transfusion. In the prespecified modified intention-to-treat analysis that included only participants who received a transfusion, the primary outcome occurred in 17 of 592 participants (2.9%) who received convalescent plasma and 37 of 589 participants (6.3%) who received control plasma (absolute risk reduction, 3.4 percentage points; 95% confidence interval, 1.0 to 5.8; P = 0.005), which corresponded to a relative risk reduction of 54%. Evidence of efficacy in vaccinated participants cannot be inferred from these data because 53 of the 54 participants with Covid-19 who were hospitalized were unvaccinated and 1 participant was partially vaccinated. A total of 16 grade 3 or 4 adverse events (7 in the convalescent-plasma group and 9 in the control-plasma group) occurred in participants who were not hospitalized. CONCLUSIONS: In participants with Covid-19, most of whom were unvaccinated, the administration of convalescent plasma within 9 days after the onset of symptoms reduced the risk of disease progression leading to hospitalization. (Funded by the Department of Defense and others; CSSC-004 ClinicalTrials.gov number, NCT04373460.).


Subject(s)
COVID-19 , Immunization, Passive , Adult , Ambulatory Care , COVID-19/therapy , Disease Progression , Double-Blind Method , Hospitalization , Humans , Immunization, Passive/adverse effects , Immunization, Passive/methods , Treatment Outcome , United States , COVID-19 Serotherapy
5.
Transfusion ; 62(5): 933-941, 2022 05.
Article in English | MEDLINE | ID: covidwho-1765061

ABSTRACT

Convalescent plasma, collected from donors who have recovered from a pathogen of interest, has been used to treat infectious diseases, particularly in times of outbreak, when alternative therapies were unavailable. The COVID-19 pandemic revived interest in the use of convalescent plasma. Large observational studies and clinical trials that were executed during the pandemic provided insight into how to use convalescent plasma, whereby high levels of antibodies against the pathogen of interest and administration early within the time course of the disease are critical for optimal therapeutic effect. Several studies have shown outpatient administration of COVID-19 convalescent plasma (CCP) to be both safe and effective, preventing clinical progression in patients when administered within the first week of COVID-19. The United States Food and Drug Administration expanded its emergency use authorization (EUA) to allow for the administration of CCP in an outpatient setting in December 2021, at least for immunocompromised patients or those on immunosuppressive therapy. Outpatient transfusion of CCP and infusion of monoclonal antibody therapies for a highly transmissible infectious disease introduces nuanced challenges related to infection prevention. Drawing on our experiences with the clinical and research use of CCP, we describe the logistical considerations and workflow spanning procurement of qualified products, infrastructure, staffing, transfusion, and associated management of adverse events. The purpose of this description is to facilitate the efforts of others intent on establishing outpatient transfusion programs for CCP and other antibody-based therapies.


Subject(s)
COVID-19 , COVID-19/therapy , Humans , Immunization, Passive , Outpatients , Pandemics , SARS-CoV-2 , United States , COVID-19 Serotherapy
6.
JCI Insight ; 7(5)2022 03 08.
Article in English | MEDLINE | ID: covidwho-1662370

ABSTRACT

Benchmarks for protective immunity from infection or severe disease after SARS-CoV-2 vaccination are still being defined. Here, we characterized virus neutralizing and ELISA antibody levels, cellular immune responses, and viral variants in 4 separate groups: healthy controls (HCs) weeks (early) or months (late) following vaccination in comparison with symptomatic patients with SARS-CoV-2 after partial or full mRNA vaccination. During the period of the study, most symptomatic breakthrough infections were caused by the SARS-CoV-2 Alpha variant. Neutralizing antibody levels in the HCs were sustained over time against the vaccine parent virus but decreased against the Alpha variant, whereas IgG titers and T cell responses against the parent virus and Alpha variant declined over time. Both partially and fully vaccinated patients with symptomatic infections had lower virus neutralizing antibody levels against the parent virus than the HCs, similar IgG antibody titers, and similar virus-specific T cell responses measured by IFN-γ. Compared with HCs, neutralization activity against the Alpha variant was lower in the partially vaccinated infected patients and tended to be lower in the fully vaccinated infected patients. In this cohort of breakthrough infections, parent virus neutralization was the superior predictor of breakthrough infections with the Alpha variant of SARS-CoV-2.


Subject(s)
Adaptive Immunity , Antibodies, Viral/immunology , COVID-19 Vaccines/pharmacology , COVID-19/virology , SARS-CoV-2/immunology , Vaccination/methods , Vaccines, Synthetic/pharmacology , mRNA Vaccines/pharmacology , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pandemics , Population Surveillance , Retrospective Studies , United States/epidemiology , Young Adult
7.
Transfusion ; 61(1): 17-23, 2021 01.
Article in English | MEDLINE | ID: covidwho-1388418

ABSTRACT

BACKGROUND: The transfer of passive immunity with convalescent plasma is a promising strategy for treatment and prevention of COVID-19, but donors with a history of nonsevere disease are serologically heterogenous. The relationship between SARS-Cov-2 antigen-binding activity and neutralization activity in this population of donors has not been defined. STUDY DESIGN AND METHODS: Convalescent plasma units from 47 individuals with a history of nonsevere COVID-19 were assessed for antigen-binding activity of using three clinical diagnostic serology assays (Beckman, DiaSorin, and Roche) with different SARS-CoV-2 targets. These results were compared with functional neutralization activity using a fluorescent reporter strain of SARS-CoV-2 in a microwell assay. RESULTS: Positive correlations of varying strength (Spearman r = 0.37-0.52) between antigen binding and viral neutralization were identified. Donors age 48 to 75 years had the highest neutralization activity. Units in the highest tertile of binding activity for each assay were enriched (75%-82%) for those with the highest levels of neutralization. CONCLUSION: The strength of the relationship between antigen-binding activity and neutralization varies depending on the clinical assay used. Units in the highest tertile of binding activity for each assay are predominantly comprised of those with the greatest neutralization activity.


Subject(s)
SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19 Serological Testing , Enzyme-Linked Immunosorbent Assay , Humans , Immunization, Passive , Immunoglobulin G/immunology , SARS-CoV-2/pathogenicity , Serologic Tests , COVID-19 Serotherapy
8.
PLoS One ; 16(4): e0249938, 2021.
Article in English | MEDLINE | ID: covidwho-1206195

ABSTRACT

This study compared the performance of four serology assays for Coronavirus Disease 2019 (COVID-19) and investigated whether COVID-19 disease history correlates with assay performance. Samples were tested at Northshore using the Elecsys Anti-SARS-CoV-2 (Roche Diagnostics), Access SARS-CoV-2 IgG anti-RBD (Beckman Coulter), and LIAISON SARS-CoV-2 S1/S2 IgG (DiaSorin) as well as at Genalyte using Maverick Multi-Antigen Serology Panel. The study included one hundred clinical samples collected before December 2019 and ninety-seven samples collected from convalescent plasma donors originally diagnosed with COVID-19 by PCR. COVID-19 disease history was self-reported by the plasma donors. There was no difference in specificity between the assays tested. Clinical sensitivity of these four tests was 98% (Genalyte), 96% (Roche), 92% (DiaSorin), and 87% (Beckman). The only statistically significant differences in clinical sensitivity was between the Beckman assay and both Genalyte and Roche assays. Convalescent plasma donor characteristics and disease symptoms did not correlate with false negative results from the Beckman and DiaSorin assays. All four tests showed high specificity (100%) and varying sensitivities (89-98%). No correlations between disease history and serology results were observed. The Genalyte Multiplex assay showed as good or better sensitivity to three other previously validated assays with FDA Emergency Use Authorizations.


Subject(s)
COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/immunology , Female , Humans , Immunization, Passive/methods , Immunoglobulin G/immunology , Male , Middle Aged , Plasma/chemistry , Plasma/immunology , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Serologic Tests/methods , COVID-19 Serotherapy
9.
Acad Pathol ; 8: 2374289520987236, 2021.
Article in English | MEDLINE | ID: covidwho-1099878

ABSTRACT

The effort to collect convalescent plasma from individuals who recovered from COVID-19 began in earnest during the spring of 2020. Either whole blood or apheresis donations were obtained, the latter yielding higher numbers of units per donor per collection and more frequent collections. The NorthShore University HealthSystem blood donor center purchased 2 Alyx (Fresenius Kabi) apheresis plasma collection devices and quickly implemented them in order to collect COVID-19 convalescent plasma. Apheresis-experienced and inexperienced phlebotomists operated the instruments. Donors were collected >14 days from symptom resolution and all donors were negative by SARS-CoV-2 nasopharyngeal swab. Both internal metrics of performance as well as a post donation survey were used to evaluate the feasibility implementing this collection program. During the first 100 days of the collection program, 650 plasma units were collected. In particular, during the first week of the program, 38 units were collected and distributed to hospitals under the emergency investigational new drug and expanded access program. Fifty-one donors (15%) were deferred due to vital signs out of range or donor screening questions. Thirty-one donors (10%) were deferred due to positive nasopharyngeal swab. Lower than target yield occurred in 16.6% of collections due to donor reactions or flow errors. Donors rated the overall program lower, but not the staff, when they reported symptoms related to collection. In conclusion, a hospital-based apheresis convalescent plasma collection program can be rapidly implemented. Donor reaction rates and vein infiltration rates should be carefully monitored for each phlebotomist.

11.
Transfusion ; 60(12): 2962-2968, 2020 12.
Article in English | MEDLINE | ID: covidwho-729351

ABSTRACT

BACKGROUND: Nucleic acid persists after symptom resolution and infectivity for many viral infections via delayed clearance of nucleic acid fragments, non-infectious particles, or transmissible virus. For Coronavirus Disease 2019 (COVID-19), the relationship between nasopharyngeal (NP) swab positivity, the development of antibodies against COVID-19, and clinical history are unclear. STUDY DESIGN AND METHODS: Individuals who recovered from COVID-19 and volunteered to donate convalescent plasma (CP) were screened by NP swab PCR, responded to a questionnaire, and were tested for anti-COVID-19 antibodies. RESULTS: A proportion of 11.8% of individuals tested positive for SARS-CoV-2 by NP swab PCR greater than 14 days after the resolution of symptoms of active disease, including one donor who had asymptomatic disease and tested positive by NP swab 41 days after her initial diagnosis. Clinical history did not show a significant correlation with persistence of NP swab positivity. Also, NP swab positivity >14 days from symptom resolution did not correlate with anti-COVID-19 serology results. IgG anti-SARS-CoV-2 spike antibody strength correlated with hospitalization for COVID-19 using two different assays. Total anti-SARS-CoV-2 nucleocapsid antibody strength correlated with time from symptom resolution to sample collection and symptom duration. CONCLUSIONS: SARS-CoV-2 nucleic acid is detectable long after the resolution of symptoms in a significant percentage of previously diagnosed individuals, which is important to consider when interpreting PCR swab results. Persistence of PCR positivity does not correlate with antibody strength or symptoms of COVID-19. If anti-spike antibody is used to assess CP potency, individuals who suffered severe COVID-19 disease symptoms may represent better donors.


Subject(s)
Blood Donors , COVID-19 Nucleic Acid Testing , COVID-19/therapy , COVID-19/virology , Donor Selection , Nasopharynx/virology , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Adult , Aged , Antibodies, Viral/blood , COVID-19/blood , COVID-19 Serological Testing , Convalescence , Female , Humans , Immunization, Passive , Immunoglobulin G/blood , Male , Middle Aged , SARS-CoV-2/immunology , Symptom Assessment , Young Adult , COVID-19 Serotherapy
12.
Transfusion ; 60(7): 1470-1475, 2020 07.
Article in English | MEDLINE | ID: covidwho-343135

ABSTRACT

BACKGROUND: When the coronavirus pandemic caused widespread school and business closures in March 2020, blood drives were canceled and the supply of blood decreased suddenly in the United States (US). In response, hospital-based transfusion medicine physicians instituted policies to conserve blood and decrease blood product usage. These efforts were aided by the US Surgeon General recommendation to cancel all elective procedures. Nevertheless, the duration, severity, and impact of the pandemic on the national blood supply was uncertain. Hospitals with in-house donor programs had the opportunity not only to control demand, but also increase supply. STUDY DESIGN AND METHODS: A hospital-based blood donor center was rapidly mobilized to increase the supply of in-house collected blood, in order to counteract a sudden but potentially long-term depletion of the national blood supply during a pandemic. RESULTS: Collections increased approximately five-fold above baseline for whole blood units, while apheresis platelet units were maintained at the historical average for the blood donor center. Cancellation of elective procedures showed a modest, but not yet statistically significant decrease in average blood product usage per day, nevertheless the in-house collection rate was sufficient to meet demand. CONCLUSION: A hospital-based blood donor center can quickly increase collection volumes and capacity in the face of a national emergency or pandemic. The desire to collect units should be balanced with safety concerns, need for sustainability, and blood product demand.


Subject(s)
Betacoronavirus , Blood Banks , Blood Donors , Blood Transfusion , Coronavirus Infections/epidemiology , Donor Selection , Pandemics , Pneumonia, Viral/epidemiology , COVID-19 , Female , Humans , Male , SARS-CoV-2
13.
SELECTION OF CITATIONS
SEARCH DETAIL